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Setting the Scene

Infrastructure as part of society

Infrastructures as part of the built environment play a crusial
role for the existence and development of society
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Pressing boundaries for societal developments: 

At local and global scales it is increasingly appreciated that 
societal developments are approaching the limits of the 
capacities of the ecological systems and the Earth life 
support system

Setting the Scene

Planetary boundaries, Steffen et al. 2015[1]Population growth, Wikepedia, UN
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Pressing boundaries for societal developments: 

Significant signs of the back-coupling between civilizations 
and living conditions for civilization are observable

Setting the Scene

IPCC homepage

CO2 emissions constant at 2000 level

Scenario A2 – heterogeneous world

Scenario B1 – convergent world
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Pressing boundaries for societal developments: 

Significant signs of the back coupling between civilizations 
and living conditions for civilization are observable

Setting the Scene

Wikepedia Anthropocene
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Setting the Scene

Infrastructures accommodating 7.5 billion people

Cities in the world (+1 million inhabitants) ~ 500
Bridges in the USA ~ 600.000
Global road network > 13 million km
Global rail network > 1 million km
Airports ~ 50.000 
Offshore platforms in the world ~ 6.500
Dams in the world ~ 45.000
Nuclear (civil) reactors in the world ~ 440
……..
……..
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Setting the Scene

Built environment alone

Contributes with ~10% of GDP in Europe

Responsible for 50% of global energy consumption  

Concrete responsible for ~8% of global CO2 emissions

Responsible for ~90% of global material consumption (weight) 
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Setting the Scene

Climate change/sustainability

McKinsey and Co Ltd
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Resilience/sustainability – some definitions and insights 

Decision Support Framework

Probabilistic systems representation
- Robustness of systems
- Resilience of systems
- Consequences to health and environment
- Sustainability of systems

Principal example 

Conclusions and outlook

Contents of Presentation
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Resilience/sustainability – some Definitions 
and Insights 

Resilience (definitions):
Pimm (1984) - Resilience….the time it takes till a system which 
has been subjected to a disturbance returns to its original mode 
and level of functionality

Holling (1996) - Resilience.…the measure of disturbance which can 
be sustained by a system before it shifts from one equilibrium to 
another

Cutter (2010) - Resilience…. capacity of a community to recover 
from disturbances by their own means

Bruneau (2009) – Resilience…. a quality inherent in the 
infrastructure and built environment; by means of redundancy, 
robustness, resourcefulness and rapidity

National Academy of Science (NAS, USA) - Resilience….a systems 
ability to plan for, recover from and adapt to adverse events over 
time
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Resilience/sustainability – some Definitions 
and Insights 

Sustainability:
Gro Harlin Bruntland report (1987) – Our Common Future

“Humanity has the ability to make development sustainable to 
ensure that it meets the needs of the present without 
compromising the ability of future generations to meet their own 
needs”
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Resilience/sustainability – some Definitions 
and Insights 

Sustainability (environment):
Kates et al.(2001) recommends to explore and assess the relation 
between resilience and sustainability and propose to utilize 
decision support systems as a means to identify sustainable 
paths of societal developments

Steffen et al. (2015) introduce the concept of Planetary 
Boundaries as a concept for representing the capacities of the 
Earth System (Earth Life Support System - ELSS)

Hauschild (2015) suggests to utilize quantitative sustainability 
assessments to assess the aggregate impacts of human activities 
at global level with respect to the main parameters controlling safe 
operating conditions (ELSS) for the planetary system. 
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Resilience/sustainability – some Definitions 
and Insights 

Insights

Resilience at global scale is equivalent to sustainability

Sustainability as well as resilience at any scale necessitate 
preservation of stable living conditions – Earth Life Support 
System (ELSS) functions 

At smaller scales there is a tradeoff between 
sustainability/efficiency and resilience

Infrastructures have a very significant environmental foot print 
and must be designed, operated and managed optimally with due 
consideration of the environment, safety and health and economy
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Resilience/sustainability – some Definitions 
and Insights 

Strategies for sustainable and resilient systems

• Efficiency/optimality
• Diversity 
• Redundancy
• Robustness
• Temporally optimized solutions
• Planned and smart renewals
• Optimal balance between efficiency and resilience
• Calibration of and fulfillment of performance criteria with respect to  

environmental impacts, Planetary Boundaries, safety and economy
• Options for buying information and changing strategies
• Additional data collection, monitoring and control
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Decision Support Framework

Hierarchies of management
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The general framework

Decision Support Framework
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Organizational hierarchical framework

Decision Support Framework
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The general framework (traditional)

Decision Support Framework

Exposure events

Direct consequences

Indirect consequences
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The general framework (new direction)

Decision Support Framework

Exposure events

Direct consequences

Indirect consequences
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The general framework  (enhanced)
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Probabilistic System Representation

Interlinked systems
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Hazards and disturbances

Type 1: “Large scale averaging events”
- low probability/high consequences 

Type 2: “Seepage events” 
- high probability/low consequences

Type 3: “Non-averaging events”
- low probability/extreme consequences

Type 4: ”Broken information”
- as for Type 1-3
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Probabilistic System Representation
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Direct and indirect consequences

Hazards/threaths Constituent damage states System damage states

Phase 1
Disturbance effects

Phase 2
Redistribution effects

Damages and failure caused
directly by disturbances

Damages and failures during
internal redistribution

Direct consequences are associated with
damages and failures of the constituents
in phase 1 - marginally

Indirect consequences are associated with
loss of functionality of the system caused by
damages and failures in phase 1 and phase 2

Probabilistic System Representation
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Robustness modeling

Exposure events
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Probabilistic System Representation
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Probabilistic resilience modeling

Service provision

Time
Time of disturbance
event

Time to recover

Total service loss

Capacity

Probabilistic System Representation
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Probabilistic resilience modeling

Service provision

Time
Time of disturbance
event

Time to recover

Total service loss

Capacity

Robustness

Probabilistic System Representation
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Probabilistic resilience modeling

Service provision

Time
Time of disturbance
event

Time to recover

Total service loss

Capacity
Robustness

Preparedness, 
adaptive capasity

Faber M. Risk Informed Structural Systems 
Integrity Management: A Decision Analytical
Perspective. ASME. International Conference on 
Offshore Mechanics and Arctic Engineering, 
Volume 9: Offshore Geotechnics; Torgeir Moan
Honoring Symposium ():V009T12A040. 
doi:10.1115/OMAE2017-62715. 

Probabilistic System Representation
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Resilience modeling

Faber M.H., Qin J., Miraglia S. and Thöns S. (2017). 
On the Probabilistic Characterization of Robustness and 
Resilience”, Procedia Engineering   198  ( 2017 )  1070 – 1083.
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Probabilistic System Representation
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Consequences to health, environment and economy

Impacts to health and safety are addressed through the relative 
utility function comprised by the Life Quality Index (LQI) 
(Nathwani et al, 1997)

Impacts to the environment are addressed through:
- Quantitative Life Cycle Analysis (substances/energy) 

(Hauschild, 2015)

Impacts to the economy are addressed through:
- Monetary benefits (production functions)
- Monetary losses (production functions)

Probabilistic System Representation
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Sustainability modeling

Global Planetary Boundaries provide a means for allocating 
capacities to different societal activities

Global capacities Local /national and sector wise 
allocation of capacities

- Built environment
- Energy production and distribution
- Food production
- Transportation
- .....
- ....
- ...
- ..

Probabilistic System Representation
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Probabilistic System Representation
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Sustainability modeling

For given sector, geographical area or project sustainability 
failure is expressed in terms of exceedance of Planetary Boundaries

Ultimate capacity

Loading process

Time

Loading, capacity (Planetary Boundaries)
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Probabilistic System Representation

32/32                         M. H. Faber,                         IFSTTAR          December 4, 2018

Overall framework

Probabilistic System Representation
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Resilience of Wind Turbine Park

Example – wind turbine park with 10 identical WT’s

Qin, J. and Faber, Resilience Modeling and Management of Wind Turbine 
Parks, IFIP W.G. 7.5, Reliability and Optimization of Structural Systems , 
Zurich, June 26-29, ETH Zurich, 2018.
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Resilience of Wind Turbine Park

Probabilistic systems modeling

Qin, J. and Faber, Resilience Modeling and Management of Wind Turbine Parks, 
IFIP W.G. 7.5, Reliability and Optimization of Structural Systems , Zurich, June 
26-29, ETH Zurich, 2018.
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Resilience of Wind Turbine Park

Probabilistic systems modeling

Hazards/threaths Constituent damage states System damage states

Phase 1
Disturbance effects

Phase 2
Redistribution effects
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Resilience of Wind Turbine Park

Probabilistic systems modeling

Structural subsystem

1H H Hg z R L 

:HR Log-Normal with expected value equal to 1, CoV equal to 0.3   
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Resilience of Wind Turbine Park

Probabilistic systems modeling

Structural subsystem

1H H Hg z R L 

:HL Wind loads on individual structures from storm events
Annual occurence rate of storms lS = 3
Intensity is Gumbel distributed, mLH

= 1, CoVLH
= 0.4

Correlation of wind loads on different structures rLH = 0.8

38/32                         M. H. Faber,                         IFSTTAR          December 4, 2018 38

Resilience of Wind Turbine Park

Probabilistic systems modeling

Structural subsystem

1H H Hg z R L 

1 :z Design parameter to calibrate structural reliability for individual
structures to a given target value
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Resilience of Wind Turbine Park

Probabilistic systems modeling

Structural subsystem
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Resilience of Wind Turbine Park

Probabilistic systems modeling

Electrical/mechanical subsystems

Mean time to failures (hours)
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Resilience of Wind Turbine Park

Consequence modeling
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Resilience of Wind Turbine Park

Consequence modeling
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Resilience of Wind Turbine Park

Results – service life benefits

Expected value of accumulated benefits over 30 years service life
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Resilience of Wind Turbine Park

Results – resilience performance

Service life probability of resilience failure as function of capacity
saving strategy (c %)
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The proposed approach facilitates that in principle any 
system may be assessed with respect to optimality, risks, 
robustness, resilience and sustainability characteristics

The novelty and potential of the approach is that resilience 
and sustainability can be modelled and quantified 
probabilistically

The main idea is to model resilience/sustainability failure as 
the event that a capacity of the system is exhausted

There is still a lot of challenges to address – not least on 
systems modeling - we are now applying the approach to 
systems of different scales and contexts – and would be very
happy for collaborations

Conclusions and Outlook
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Thanks for your attention 

mfn@civil.aau.dk
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