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Setting the Scene

Infrastructure as part of society

Infrastructures as part of the built environment play a crusial
role for the existence and development of society
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Setting the Scene
Pressing boundaries for societal developments:

At local and global scales it is increasingly appreciated that
societal developments are approaching the limits of the
capacities of the ecological systems and the Earth life

support system
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Setting the Scene
Pressing boundaries for societal developments:

Significant signs of the back-coupling between civilizations
and living conditions for civilization are observable
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Setting the Scene
Pressing boundaries for societal developments:

Significant signs of the back coupling between civilizations
and living conditions for civilization are observable
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Setting the Scene
Infrastructures accommodating 7.5 billion people

Cities in the world (+1 million inhabitants) ~ 500

Bridges in the USA ~ 600.000
Global road network > 13 million km
Global rail network > 1 million km
Airports ~ 50.000
Offshore platforms in the world ~ 6.500

Dams in the world ~ 45.000
Nuclear (civil) reactors in the world ~ 440
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Setting the Scene

Built environment alone

Contributes with ~10% of GDP in Europe
Responsible for 50% of global energy consumption
Concrete responsible for ~8% of global CO2 emissions

Responsible for ~90% of global material consumption (weight)
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Setting the Scene

Climate change/sustainability

Growth in building stock

Floor area space in billion sq m
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Resilience/sustainability — some Definitions
and Insights

Resilience (definitions):

Pimm (1984) - Resilience....the time it takes till a system which
has been subjected to a disturbance returns to its original mode
and level of functionality

Holling (1996) - Resilience....the measure of disturbance which can
be sustained by a system before it shifts from one equilibrium to
another

Cutter (2010) - Resilience.... capacity of a community to recover
from disturbances by their own means

Bruneau (2009) - Resilience.... a quality inherent in the
infrastructure and built environment; by means of redundancy,
robustness, resourcefulness and rapidity

National Academy of Science (NAS, USA) - Resilience....a systems
ability to plan for, recover from and adapt to adverse events over

time
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Resilience/sustainability — some Definitions
and Insights

Sustainability:
Gro Harlin Bruntland report (1987) - Our Common Future

“Humanity has the ability to make development sustainable to
ensure that it meets the needs of the present without
compromising the ability of future generations to meet their own
needs”
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Resilience/sustainability — some Definitions
and Insights

Sustainability (environment):

Kates et al.(2001) recommends to explore and assess the relation
between resilience and sustainability and propose to utilize
decision support systems as a means to identify sustainable
paths of societal developments

Steffen et al. (2015) introduce the concept of Planetary
Boundaries as a concept for representing the capacities of the
Earth System (Earth Life Support System - ELSS)

Hauschild (2015) suggests to utilize quantitative sustainability
assessments to assess the aggregate impacts of human activities
at global level with respect to the main parameters controlling safe
operating conditions (ELSS) for the planetary system.
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Resilience/sustainability — some Definitions
and Insights

Insights

Resilience at global scale is equivalent to sustainability

Sustainability as well as resilience at any scale necessitate
preservation of stable living conditions — Earth Life Support
System (ELSS) functions

At smaller scales there is a tradeoff between
sustainability/efficiency and resilience

Infrastructures have a very significant environmental foot print
and must be designed, operated and managed optimally with due
consideration of the environment, safety and health and economy
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Resilience/sustainability — some Definitions
and Insights

Strategies for sustainable and resilient systems

» Efficiency/optimality

« Diversity

* Redundancy

* Robustness

* Temporally optimized solutions

* Planned and smart renewals

» Optimal balance between efficiency and resilience

+ Calibration of and fulfillment of performance criteria with respect to
environmental impacts, Planetary Boundaries, safety and economy

« Options for buying information and changing strategies
« Additional data collection, monitoring and control
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Decision Support Framework
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Decision Support Framework

Organizational hierarchical framework
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Decision Support Framework

The general framework (traditional)

Exposure events
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Decision Support Framework

The general framework (enhanced)
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Probabilistic System Representation

Interlinked systems

ﬁal system ?

7

svstem
o/ )ié
Infrastructure Ecological/earth
system / life support
\ system J

Anthropological > N
L13
hazard system = s =2
DR Sl
14 \ =5 L4 T2 ) i
- Py . - =
3 St o R
z G R
g 2 3 = =
3 S o =
g £ [} g
z 8 [ =
£ H $
-1 s 3
= w =
B Geo hazard £
& =
[ 2
‘s
s
s

20/32 M. H. Faber, IFSTTAR December 4, 2018




Probabilistic System Representation

Hazards and disturbances

Type 1: “Large scale averaging events”
- low probability/high consequences

Exposure events

Exposure

Hazards

‘ Vulnerability

Type 2: “Seepage events”
- high probability/low consequences

Type 3: "Non-averaging events”

Direct consequences
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Probabilistic System Representation

Direct and indirect consequences

Phase1 Phase 2

Disturbance effects Redistribution effects

|

|

Hazards/threaths Constituent damage states System damage states
S S
L L
Damages and failure caused Damages and failures during
directly by disturbances internal redistribution
Direct consequences are associated with Indirect consequences are associated with
damages and failures of the constituents loss of functionality of the system caused by
in phase 1 - marginally damages and failures in phase 1 and phase 2
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Probabilistic System Representation

Robustness modeling

It is assumed that all relevant scenarios
Exposure events o have been identified
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Probabilistic System Representation

Probabilistic resilience modeling R T
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Probabilistic System Representation

Probabilistic resilience modeling T 1 ]
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Probabilistic System Representation

Probabilistic resilience modeling R T
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Probabilistic System Representation

Resilience modeling

Disturbance events
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Probabilistic System Representation

Consequences to health, environment and economy

Impacts to health and safety are addressed through the relative
utility function comprised by the Life Quality Index (LQI)
(Nathwani et al, 1997)

Impacts to the environment are addressed through:
- Quantitative Life Cycle Analysis (substances/energy)
(Hauschild, 2015)

Impacts to the economy are addressed through:
- Monetary benefits (production functions)
- Monetary losses (production functions)
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Probabilistic System Representation

Sustainability modeling

Global Planetary Boundaries provide a means for allocating
capacities to different societal activities

Local /national and sector wise
allocation of capacities
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Probabilistic System Representation
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Probabilistic System Representation

Sustainability modeling

For given sector, geographical area or project sustainability
failure is expressed in terms of exceedance of Planetary Boundaries

Loading, capacity (Planetary Boundaries)

Ultimate capacity
Loading process

Time
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Decision analysis

Probabilistic System Representation

Overall framework

Dedisions on
deveiopment and
maintenance of
engineered systems
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Resilience of Wind Turbine Park

Example - wind turbine park with 10 identical WT's

Qin, J. and Faber, Resilience Modeling and Management of Wind Turbine
Parks, IFIP W.G. 7.5, Reliability and Optimization of Structural Systems ,
Zurich, June 26-29, ETH Zurich, 2018.
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Resilience of Wind Turbine Park

Probabilistic systems modeling

‘managemen
decision making

operational load

System modeling for wind turbine

System modeling for wind turbine System modeling for wind turbine
- physical modeling for system of systems

- physical modeling for system of systems - physical modeling for system of systems
mechanical electrical mechanical eleetrical mechanical electrical
subsystem subsystem subsystem subsystem 7| ..., . subsystem subsystem
structural structural
/ subsystem subsystem
Dependency at the level of subsystem

Qin, J. and Faber, Resilience Modeling and Management of Wind Turbine Parks,
IFIP W.G. 7.5, Reliability and Optimization of Structural Systems , Zurich, %ne

26-29, ETH Zurich, 2018.
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Resilience of Wind Turbine Park

Probabilistic systems modeling [[rer

Phasel Phase2
Disturbance effects Redistribution effects

1 1

Hazards/threaths Constituent damage states System damage states

Potential loads

acting on the subsystems extra load due to
the overload of
T 1d 1 ope 1 d i envr 1load the other part of the wind turbine
s o .
/’

clectrical mechanical |
subsystem subsystem

structural
subsystem

scries system representation of
a wind turbine
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Resilience of Wind Turbine Park

Probabilistic systems modeling

Potential loads

acting on the subsystems extra load due to
the overload of
I 1 d 1 op I d 1 envrionmental load the other part of the wind turbine

clectrical | mechanical structural

subsystem subsystem subsystem

series system representation of
a wind turbine

Structural subsystem
gy =zRy —Ly

R, : Log-Normal with expected value equal to 1, CoV equal to 0.3
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Resilience of Wind Turbine Park

Probabilistic systems modeling

Potential loads

acting on the subsystems extra load due to
the overload of
operational d 1 of 1 ds 1 envrionmental load the other part of the wind turbine

’ !
1 -
Y 2 =
clectrical | mechanical structural
subsystem subsystem subsystem
series system representation of
a wind turbine

Structural subsystem

gy =Ry =Ly

L,: Wind loads on individual structures from storm events
Annual occurence rate of storms Ag=3

Intensity is Gumbel distributed, p, , =1, CoV,,=0.4
Correlation of wind loads on different structures pLH = 0.8
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Resilience of Wind Turbine Park

[
-

Probabilistic systems modeling

Potential loads

acting on the subsystems extra load due to
the overload of
operational d 1 oy I d 1 envrionmental load the other part of the wind turbine

¥ -
¥ :
electrical | mechanical structural
subsystem subsystem subsystem
series system representation of
a wind turbine

Structural subsystem
gy =zRy —Ly

z, . Design parameter to calibrate structural reliability for individual
structures to a given target value
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Resilience of Wind Turbine Park

Probabilistic systems modeling

Potential loads
acting on the subsystems extra load due to
the overload of
1d 1 1d i

( envrionmental load the other part of the wind turbine
| . l i - .

Y 2 .
clectrical | mechanical
subsystem subsystem

Structural subsystem

Reliability calibration to environmental load

series system representation of
a wind turbine

Conditional failure probability of the structural

Target level of Probability of failure due to subsystem given the failure of the electrical
desion environmental load 2 subsystem or the mechanical subsystem of the
- 1 same wind tubine
Pr(g; <0)
High target level 1.1x107 35 0.1
Low target level 1.2x107 2.5 0.3
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Resilience of Wind Turbine Park

Probabilistic systems modeling

Potential loads
acting on the subsystems extra load due to
the overload of

¢ I d 1 envrionmental load the other part of the wind turbine

electrical | mechanical
subsystem subsystem

structural
subsystem

series system representation of
a wind turbine

Electrical/mechanical subsystems

Mean time to failures (hours)

Target level of design

Electrical subsystem

Mechanical subsystem

High target level 450643 1236712
Low target level 25708 90472
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Resilience of Wind Turbine Park

Consequence modeling

Functionality

AB, |

+

f t
Time of disturbance event
Low preparedness High preparedness
Variable Disichulion Expected value Expected value
Structural Electrical Mechanieal cov Structural Electrical Mechanical cov
1 3 Subsy subsystem subsystem subsystem
AT, log-normal AB, AB,/3 AB,/3 02 AB,/2 AB,/6 AB,/6 0.1
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Resilience of Wind Turbine Park

Consequence modeling

Functionality

Time of disturbance event

Type of subsystems

Replacement cost

Electrical subsystem

Mechanical subsystem

Structural subsystem

0.6
0.4
2
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Resilience of Wind Turbine Park

Results - service life benefits

Low reliability = Low reliability High reliabili High reliability
Low prepared High prepared Low prepared High preparedness

Expected value of accumulated benefits over 30 years service life
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Resilience of Wind Turbine Park
Results - resilience performance

1 5 10 15 20 25 30 35 40 45 50

S Low reliability
107 B s — - ] Low preparedness
10° ok

. High reliability .
: 1070 Lowpreparedness  Low reliability |
-4 \ i
10+ High reliability T1i8h preparcdness :
10° High preparedness
10¢
107

Service life probability of resilience failure as function of capacity
saving strategy (y, %)
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Conclusions and Outlook

The proposed approach facilitates that in principle any
system may be assessed with respect to optimality, risks,
robustness, resilience and sustainability characteristics

The novelty and potential of the approach is that resilience
and sustainability can be modelled and quantified
probabilistically

The main idea is to model resilience/sustainability failure as
the event that a capacity of the system is exhausted

There is still a lot of challenges to address — not least on
systems modeling - we are now applying the approach to
systems of different scales and contexts — and would be very
happy for collaborations
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